
Shell Scripting

Kyle Wheeler

Contents

1 Intro 1
1.1 What is a Shell . 1
1.2 What are Shell Scripts? . 1
1.3 Why Use Shell Scripts? . 1

2 One Liners 2
2.1 Redirection . 2

2.1.1 File Descriptors . 2
2.1.2 Simple Redirection (�������) . 2
2.1.3 Lots of Files! . 2
2.1.4 Connecting Outputs . 2
2.1.5 Appending . 3

2.2 Conditionals . 3
2.3 EnVariables . 3
2.4 Quotes, Strings, and Expansion . 4

2.4.1 Wildcards . 4
2.4.2 The Tilde . 4
2.4.3 Lists . 4
2.4.4 Variables . 4
2.4.5 Quotes . 5

3 Story Problems 5
3.1 Loops . 5

3.1.1 For-Loops . 5
3.1.2 While-Loops and Until-Loops . 6

3.2 More Variables . 6
3.2.1 Numbers . 6
3.2.2 Better String Manipulation . 6

3.3 Conditionals . 7

4 Advanced Scripts 7
4.1 Pre-Defined Variables . 7

4.1.1 The Numbers . 7
4.1.2 The Rest . 7
4.1.3 Arrays . 8

4.2 Pre-Defined Functions . 8
4.3 Functions . 8

5 Beyond Scripts 8
5.1 Readline’s Beauty . 9
5.2 Unix Tools . 9
5.3 Config Files . 10

6 Examples 11
6.1 Change Background . 11
6.2 Check

���
	 � ��� ��� ���� ��� 	 � � � . 11

1 Intro

This document is an introduction to shell scripting. It’s not meant to be a complete or authoritative
source, but by the same token, I’m pretty sure I know what I’m talking about. All examples in this docu-
ment (unless otherwise noted) use

� 	 ��� syntax1. If I mention a script in here, I try and include it at the
end of this document in the Examples section.

1.1 What is a Shell

Many computers have some form of a command-line interface. That is, on many computers you can
bring up a window with what is called a command-prompt where you can type in commands to get the
computer to do something that you want it to do. In each of these interfaces, there is a program run-
ning that reads what characters you have typed in, and translates them into actual commands that the
computer hardware can understand. This program is called the command-interpreter, or “the shell.”2

In the strictest of senses, DOS, as a command-line environment, has a shell, called ��������	�
��������� . On
Unix systems, there are many available shells.

1.2 What are Shell Scripts?

A shell script is a text file containing a set of commands to run within the shell. A simplistic example
of a shell script would be a Windows ���	�� file. Advanced shells support more complete or convenient
command sets within such a file (script). In most cases, the contents of that file could be typed into the
command-prompt and the effect would be the same as running the script.

In Unix, since there are many, many shells available, scripts can be written for any of the shells. And
since each shell may use different syntax and may have different capabilities, each shell script must iden-
tify which shell it should be interpreted3 with to get the correct behavior. In Unix, the way that shell scripts
identify the correct shell is the first line of the script. The first line of the file is a shebang4 followed by the
absolute path to the shell (generally, shells are kept in

� �����
). Here is a standard example:

��� � ����� � � 	 ���

By convention, the hash symbol (#) is almost always a comment delimiter in shell scripts (and behaves
similarly to the C++ comment delimiter,

���
).

1.3 Why Use Shell Scripts?

Some people look at shell scripts and think “Hey, that looks like another programming language! I’ll just
do it in the programming languages that I’m used to.” And for most things, you could. However, shell
scripts make doing simple tasks easy. For example, if you wanted a program to look at a directory full
of JPEG image files, select one of them at random, and set that JPEG file as the desktop picture, you
could write a C program to do that. But then you’d have to use the various system calls, and then learn
the Xwindows API commands for setting the desktop picture, trap for errors, compile, and then hunt
down the bugs. Or, you could write a five-line shell script that uses the pre-made tools that come with X
(twelve lines, if you want to be fancy). If you want to monitor

� �
	 � ��� ��� � �� ��� 	 � � � , and you want to have
the computer email you a sorted copy of it when there are five lines that match a specific pattern, you
could write a C program that opens

� �
	 � ��� ��� � �� ��� 	 � � � , then uses your hand-made pattern matching
algorithm to look for this one specific pattern, and counts how many there are, saves them in memory,
uses your hand-made sorting algorithm, opens a TCP port, connects to your mail server, talks SMTP (use

1Because, as you will realize by the end of this document, ����� � is the “one true shell,” and all others are pretenders to the throne.
2It is called a “shell” because all (well, almost all) commands that you can execute will run as a child process of the shell program

– and therefore will inherit (or be “in”) the shell’s “envirionment.” (see the EnVariables section) Thus, because the shell provides the
environment, it can be thought of as a shell around the commands that are given to it.

3“Interpreting” a shell script is almost always the same as running or executing the contents of the shell script, and most people
use the terms interchangeably.

4A shebang is a hash symbol (#) followed by a bang, also known as an exclamation mark (!).

1

RFC 821) to send out a message, and closes the port. OR, you could write a seven line shell script that uses
a for loop, ���

� � , ��� , ������� , and pipes the results to � � ��� 	 � � .
In essence, the point behind writing a shell script is not only to be able to run the same commands

over and over again without retyping them and without worrying about typos the hundredth time you
run it, but also to use the many useful tools that Unix comes with, instead of re-inventing the wheel.

2 One Liners

Shell scripts can do an amazing number of things in one line. You may argue whether or not they are real
shell scripts (although many shell scripts on a Unix machine are only two lines—the shell identifier, and
the complex command), but they’re good to know anyway.

2.1 Redirection

2.1.1 File Descriptors

Unix programs, when launched, have three file-descriptors5 open. These file descriptors are called Standard-
Input (stdin), Standard-Output (stdout), and Standard-Error (stderr). Most command-line utilities will
read in input from stdin, write errors to stderr, and write everything else to stdout. Each of these file
descriptors has a number—stdin is number 0, stdout is number 1, and stderr is number 2 (this will be
important later).

2.1.2 Simple Redirection (�������)

One very useful Unix tool is ����� � . ������� takes input from stdin, sorts that input by line, and writes it in
sorted form to stdout. Using a shell, you can connect a file to ����� � ’s stdin. If, say, you have a file that is a
list of words to sort,

����� ���	� � ���

will print out the contents of that file, sorted. You can also direct the output of a command to another file,
like this:

����� ���	� � ����
 � � ��� ����� � � �

(the order of redirection does not (usually) matter—you can use � �����
 � � � � � ����� � � ��� � � � as well).
Note that you have only directed stdout to the �

� � � ������� � � , so errors will still be printed to the terminal.
If you wish to redirect stderr to a file, you must remember that stderr is file descriptor number two (I told
you it would be important), so to redirect it you do this:

����� ���	� � ����
 � � ��� ����� � � ��
 � � � � � � �
���

2.1.3 Lots of Files!

You can also use the shell to open new files, either for reading or writing, as long as you specify the number
that the descriptor will have (although you are not guaranteed that the program will use it)—but that’s for
advanced users. If you’re curious, here’s an example:

����� ���	� � ����
 � � ��� ����� � � ��
 � � � � � ���
���	�
 � � � � ������� � � �

2.1.4 Connecting Outputs

You can also connect the output together. For example, it is common that you want both stdout and
stderr to be saved in the same file. Here’s how it works:

����� ����� � � ����
��
 � � � � ��� �
5Everything in Unix is treated as a file, so while these may not be files per-se, treat them as such (for the most part).

2

2.1.5 Appending

Once you start playing around with redirection like this, you’ll notice that every time you do it, your
� � ��� ����� � � � is replaced with a new copy. If you do not want that behavior, and would rather that your
command was appending to the end of the file, simply use

instead of

.

2.2 Conditionals

When programs (commands) finish (or exit, quit, stop, or whatever you want to call it) they pass back to
the shell something called a “return value.” This value indicates whether the command was successful or
not. A common thing to want to do is to have one command contingent upon the successful completion
of a previous command. For example, you may have a very important command to run, and you want
it to email you if that command fails. Or you may have a series of commands, but you don’t want it to
execute the rest of the commands if one of them fails.

The way you do this is with conditionals (which are based upon the return values of the commands
that you execute). Conditionals are traditional boolean operators—you use some reasonably standard
symbols:

���
(or),

� �
(and),

�
(not), and � 6. Commands are interpreted in a short-circuit fashion. So, in an		� � �

command, if
	

returns false,
�

won’t be executed, but in an
	���� �

command, if
	

returns true,
�

won’t be executed.
Here’s a command that will compile � ��� � , and if there are no errors, will execute the output:

� � � � � � � � � � 	 ��� �

Here’s another example that will compile � ��� � , and if there are errors, it will edit the file:

� � � � � � � ��� � � � ��� �

You can also stack them together. Here’s a command that will compile � � � � , and if there are no errors
execute it, but if there are errors will edit the file:

� � � � � � � � � � 	 ��� � ��� � � � ��� �

2.3 EnVariables

One of the concepts in Operating Systems that was invented a long time ago is “environment variables.”
Basically, there is certain information, identified by a string of characters (a name) that is part of the
“environment” in which a program runs. A copy of these envariables is given to commands you run, and
they’re used, generally, to store some preferences and configuration settings. You set EnVariables like this:

��� �
�������	��
 ������
��� ������� � � � ��� � � � ��� �

Some of the important ones you will probably care about are:

�	��
 ������
���� ���
Set this to

� � � ��� � � � ��� , and thank me later. (It ignored duplicates when building your command-
history. If you don’t know what I’m talking about, you’ll thank me even more when you read the
Readline section.)

�
 � &
�

These set the prompts.
�
 � is the standard prompt,

�
 is the prompt you get if you’ve left a con-
tainer open (containers are loops, quotes, parenthesis, and so on). There’s a

�
 � too, but it’s rarely
used.

� 	�����
This is the default program to be used for viewing text files. One program that uses this is

 	 �
—you

can use this to switch between using
 ��� � and

� � ��� to view man pages, for example. (Set it to
��� ��� .)

6The � operator is a conditional that suffices as a command separator—subsequent commands are always executed with this
separator.

3

��� � � ���
This is the default program to be used for creating or editing text files. Most mail readers/composers
use this.

� 	�� � 7

This is a colon-separated list of directories to look in when you type in a command (if the command
is in one of those directories, it will be executed). The list is searched in order, from the beginning
to the end, and the first one found will be used.

2.4 Quotes, Strings, and Expansion

2.4.1 Wildcards

When you express a string in a command, it is generally interpreted in some way before it is actually
evaluated. For example, if you execute the following command

� � � � � �

a list of all the files in the current directory that end in � � � will be printed to the terminal. The
�

is used as
a wildcard in the shell’s primitive pattern matching, and is always used to select from file names. The shell
expands the

� � � � pattern, so if your current directory holds two text files named � ��� � � � and
� 	 � � � � ,

then
� � thinks the command looked like this:

� � � 	 � � � ������� � � �

2.4.2 The Tilde

You’ve probably also seen references to files written like this:

�
��� �

� �����
The

�
in that command is “expanded” to mean the current user’s home directory (which may not always

be in
� �
� �� , depending on the system—for example, on MacOS X, it’s

��� � � � � , and on Oak it’s much more
complicated). The

�
can also be used with other usernames to get the paths to the named user’s home

directory—like this:

� � � � � � � � �	 ��� � � � 	 ��� �����

2.4.3 Lists

You can enumerate a number of possible strings using lists, and it will act like a limited wildcard. For
example

� � ��� �� 	 � �
	 � � � 	 � ��� 	 � � � 	 �����
will delete � � � 	 � � , � � � � � � , � ��� � ��� , � � � � � � , and � ��� � � . These lists can be nested.

2.4.4 Variables

Variables are also interpreted in strings. The contents of the current environment are all variables, so to
find out, for example, what is in your

� 	�� � variable, you can:

�
� �
�� � 	�� ��
� �
�� � � 	�� ���

The two are equivalent, but the second one, in complicated scripts, is generally safer and harder to con-
fuse. You can also define your own variables, and use them, like this:

� ����� � 	 ��
� �
�� � ���

7Do NOT put ”.” ANYWHERE in here.

4

The second line there is interpreted by the shell as if you had really typed in:
�
� � � � 	 � . That means you

could also do this:

� ����� � � ��� � � � ��� � ��� � � � ���

And it would behave as if you had typed in
� ��� � � ��� � � �����

.

2.4.5 Quotes

If you want to alter the standard method of interpretation, you can group things into strings using quotes.
There are three kinds of quotes: double-quotes (�), single-quotes (

�
), and back-quotes (

�
).

Double-quotes group things into strings, so you can have an argument that contains spaces. Variables,
tildes, wildcards, and other kinds of quotes are still interpreted or expanded within double-quotes.

Single-quotes group things into strings similarly to double-quotes, but nothing inside of single-quotes
is interpreted further.

Back-quotes evaluate the contents as if it was another command.
Confused? Consider the following table of commands and results:

Double Quotes Single Quotes Back Quotes
�
� � �	� ���
 � � � � � � � �

� � �	� ���
 � � � � � � � �
� � �	� � �
 � � ��� � � ��

� � � � 	 �

 � � � � � � � �
� � � � 	 �

 � � ��� � � � �

� � � � 	 �

 � � � � � � �
� � � � � ���� � � � � � � � � � � � � ���� � � � � � � � � � � � � ���� � � � � � � ��
� � � � ��� � � � � � � � �� � �

� � � � ��� � � � � � � � �� � �
� � � � � � � � � � � � � ��� �

The Output: The Output: The Output:

��� �
� � � � � � � � ��� �

� � � � � � ���

3 Story Problems

So, you’ve mastered the one-liner. You understand quotes, variables, wildcards, redirection, and you’re
on top of the world. Then you want to add a ��� � extension to every file in a directory.

3.1 Loops

Loops to the rescue! The shell supports a few different kinds of looping structures. There’s a � ��� loop, a
� � � � �

loop, and an �
� � � � loop, among others.

3.1.1 For-Loops

There are two kinds of for-loops: C-style and list-style. C-style for-loops are easy to explain by example.

� ������� � � � � �	��� � � � �	� ��
�
 � � ��
� �
�� �
� � � �

This script will print out 1, 2, and 3 on separate lines. Just like a C for-loop, the first part initializes a
variable, the second part is a test, and the third part is the increment.

The second kind of for-loops are based in the shell’s ability to parse strings into lists. Here’s an example:

� ��� � ��� � � � � � � � � � ��
� �
�� �
� � � �

The shell parses the string between the “
���

” and the “ � ” and separates it into a list of things. For each
item in the list, the

�
variable will be assigned the value of the item, and the contents of the loop will be

executed. The shell separates things into lists by spaces and by newlines—so in this example, where you

5

would expect it to simply print out the name of every file in your home directory, if one of those files has
a space in its name, the name of that file will be split and put on different lines.

So in my example, you can add the � � � extension like this:

� ��� � ��� � � � � � � � � � � � � � � �

Oh, didn’t I tell you? Loops can be expressed as a single line. But you see how variable names can get
confusing? It would be safer to write that script like this:

� ��� � ��� � � � � � � � � � � � � � � � � � � �

3.1.2 While-Loops and Until-Loops

These loops perform exactly as you would expect them to. While-loops work like this:

� � �
� � � � ��� � � � ����� � � �� � ��� � � �
�
�
� �
� ��
 ��� � � � ���
� � �
� � � �

And until-loops are identical, except the test (in the example, the test was
� � � � �����) is negated.

3.2 More Variables

3.2.1 Numbers

You’ve probably been able to tell already that there is more to the shell’s variable handling than meets the
eye. Most of the time, variables are treated as strings, however, they sometimes can act as numbers. To
treat a variable as a number, you can put an expression involving it inside double-parenthesis (like above:� � ��� � � �
�
). Variables may also behave like numbers when the Unix tool �

� � � is evaluating them. Note:
� � � � is symlinked to

�
, and the � is thrown away! So if you want to look up the right syntax, use

�	 � � � � � .

3.2.2 Better String Manipulation

Unfortunately, the shell’s string manipulation abilities are limited at best. Fortunately, you can use stan-
dard Unix tools to achieve the same effect. What say you need to take a bunch of files with spaces in their
names, and replace the spaces with underscores. That sounds like a job for �

� �
(�
� �

interprets standard
regular expressions for you)! You could do something like this (note the different kinds of quotes):

� ��� � ��� � � � � � � � � � � � � � � � ��� � � �
	�� � � �
� � � �

Similarly, if you want to find out your IP address in a shell script, you can use the other beautiful tool,	
� � .

	
� � is very powerful, but one common use is for identifying text strings separated by white space

(spaces and tabs). Combine that with � � � (which separates strings by specific characters), and you can
do something like this:

�
� � � � � � � ����� � � � � � � � � � � ���� � ��� � � � ��� � � 	 � � ��� � � 	
� � � � � � ��� � � � �

� � � �
� � � � �

See how cool pipes can be?

6

3.3 Conditionals

There are two main conditionals (that I haven’t mentioned already). The first is
� � . Its use is pretty easy

to understand, and fairly predictable. However, its syntax is a little unusual. Here’s how it works:

� � � � � � � � � � ��� � �
�
� �
� � � � � 	 � � � � � �� � � � � � � � � � � � ��� � �

�
� �
� � � � � 	 � � � � � �� � � �

�
� �
� � � � � 	 � �
 � � ��� � � �
� �

Notice that the close of the if-statement is
� � backwards? Case is the same way. Here’s an example case-

statement that does the same thing as that if statement.

�
	 � � � � � ���
� � �
�
� �
� � � � � 	 � � � � � �
���
� �
�
� �
� � � � � 	 � � � � � �
����

�
� �
� � � � � 	 � �
 � � ��� � � �
���� � 	 �

4 Advanced Scripts

So what say you haven’t learned how to use
�	 � � yet, and you’re compiling � ��� files into � � � files, and

you’re getting tired of manually compiling your LATEX into � � � , ��� , and finally � � � s. You have two
choices: learn

�	 � � (highly recommended), or write a shell script!

4.1 Pre-Defined Variables

4.1.1 The Numbers

Shell script text files, when you set the executable bit on them, can be executed just like regular programs.
As regular programs, they may be given arguments, and you can find out what the value of those argu-
ments are, using some of the pre-defined variables. The “numbers,” as I call them, are the variables � , � , , and so on. In a shell script, � will correspond to how the shell script was called, � will correspond
to the first argument given to it, and so on. If there was no argument, the variable contains nothing. So,
to solve my

�	 � � -less problem, I could write this shell script:

��� � ����� � � 	 ���
� 	 � ��� � � ���	� � � � � ����� �� � ��� � � � � � � ��� � � � � ���
If, for example, I called that shell script

� 	 � ��� � � , and put it in my path, I could compile � ��� � ��� file into
� ��� � � � with this command:

��	 � ��� � ��� ��� . The “numbers” are redefined for functions (which I’ll talk
about in a moment). In functions, they correspond to the arguments passed to the function instead of
the ones passed to the shell script itself.

4.1.2 The Rest

There are more pre-defined variables in the shell. Here they are:

7

 �
This expands to the argument list passed to the script.

 �
This expands to the argument list passed to the script separated by spaces.

 �
This expands to the number of arguments passed to the script.

��
This expands to the status of the most recently executed command (did it succeed or did it fail?)

�
This expands to the PID of the shell.

 �
This expands to the PID of the last command (spawned process).

 	
This expands to the absolute file name of the shell script, or the last argument to the previous com-
mand (after expansion).

4.1.3 Arrays

I suppose it is worth mentioning that variables can be arrays, like this:

� ��� � � � � � 	 ��
� �
�� � � ��� � � ���

4.2 Pre-Defined Functions

There are literally hundreds of pre-defined functions built into the one true shell. If you want to memorize
them all, read the man page. The two that I use the most in shell scripts are � � 	 � , �

� � � � , and
���
	��

. They do
predictable things, similar to how they work in other interpreted languages. �

��	 �
will read into a variable

from a prompt or a file, �
� � � � will un-declare and destroy a variable, and

��� 	 �
will evaluate a string (or a

variable) as a command.

4.3 Functions

This is the fun stuff—defining your own functions. This is another idea that is easiest to explain by exam-
ple. Here’s a function (that’s in my

� � � 	 ��� � � , actually) for adding something to the
� 	�� � .

� � � � � � � � 	 � � 	 � � 	 � 	 � � ��
 � 	�� � � �
� ��� � ��� � �

� � � � 	�� � � � � � � � � � � � � � � � � �� � � � ��� � � � ��� � �
�
 � 	�� � � �� � � 	 �
� �
� � � �� �
 � 	�� � � � � ��� � � � 	�� � ��� � 	�� ��� � �
� � � � � �
 � 	�� �

5 Beyond Scripts

This section just collects little bits of information related to shells and scripting that some people might
not know (and would make their lives considerably easier).

8

5.1 Readline’s Beauty

Once upon a time, a Unix hacker was typing a multi-line script into his shell and made a mistake (a rare
thing for this hacker). He reached for the backspace key, and there appeared in his terminal:

� � . This
greatly displeased the hacker extraordinaire, and he tried to use the arrow keys to go back and edit his
command. Instead, he got

�
�
� � . As he was retyping his command, from scratch, he resolved that such a

thing should never happen again. After he was done with his script, he wrote a library such that this thing
should never happen in his shell again. He created libreadline, and it was good.

Libreadline is a library for reading from the terminal that any shell worth anything at all uses. It has
command history (press the up-arrow to scroll through your previous commands), it allows you to edit
your command using the arrow keys, it allows you to tab-complete the names of files and commands (to
prevent typos, when you type the beginning of a long filename hit tab and the rest of it will automatically
be typed in for you), it even allows you to use standard emacs or vi commands (emacs is default) to edit
your command. It is, truly, a thing of beauty.

5.2 Unix Tools

This list, borrowed in part from Matt Hyclak, is a list of commands that you should know and are very
useful if you do much shell-scripting.

	
� �

Scans its input for lines that match any of the patterns specified.

�
	 �

Takes stdin and any files that you pass it and dumps them to stdout, in order.

� � �

Prints selected parts of lines from its input to stdout.

� 	 � �

Prints the current time and date (optionally some other time and date) in a specified interesting or
beautiful format.

� � � �
Outputs the difference between two text files; returns 1 if two binary files differ.

�
� � �

Prints it’s command line arguments to standard output.

� �����
Helps to find a file in your filesystem based on one of many characteristics including name, size,
modification time, filetype... etc.

��� � �

Grep is used to search for a regular expression (complex pattern) in a file.

� � ���

A GNU replacement for the basic
 ��� � pager; superior in almost all respects.

� � �
	 � �

A better �
�����

than �
�����

if all you’re concerned about is filename.
� � �

	 � � periodically (daily, on most
systems) creates a database of all your files and searches that instead of the life filesystem to improve
search time tremendously.

� � � �
or

� ��� � �
A simple console mode web browser;

� � � �
can really save you if you need to reference the web and

X is misbehaving.
� ��� � � is a better

� � � �
, supports more accurate html rendering, supports tables,

and all of
� � � �

’s syntax.

9

�	 �
This is the Unix manual page browser. Not useful in scripts, but if you don’t learn any other com-
mands, learn this one!

 ��� �

This is the standard Unix pager;
 ��� � displays its input to the screen, breaking at every screenful to

wait for you to hit enter.

� � ��� � �
A better

�
� �
� , � �

��� � � translates
� �

into newlines, among other things.

���

Lists the currently running processes on the system in any number of wild and wonderful ways.

� � �

Performs potentially complex operations on its input similar to those you might do in an editor.

�������

Takes its input, sorts it based on specified criteria, and outputs it.

� � � �

Evaluates an expression and returns zero or 1 depending on its truth value.

���
Gives you statistics about a file’s content: number of characters, lines, words, etc.

� � �
� �
Returns the complete (canonical) pathname of a given command.

� � � / �
Lists all the current users of the system (with some caveats).

�
	 ��� �
Breaks its input into tokens and provides those tokens as arguments to a specified command.

5.3 Config Files

Guess what—config files are just little shell scripts that don’t have a limited scope (they are executed
directly by the shell, and not by a child of the shell)! Don’t believe me? Check out a standard � 	 ��� � � :
� � 	 ����� �
� � � ��� � � � 	 ��� 	 � �
� � � � � � � ��� � �
 � � � 	 ��� 	 ���
� � � ���
� �

� ��� � ��� ��� � �
�
 � ��� � � ��� � � � � � � � ��
 ��� � � �
� � � � � � � � �

� � � � 	 � � 	 � � � 	 ��� � � � � � � � � �	 � � 	 � � � � � � ����� � � � ��� �	 � � 	 � � � � � � � � ��� � � � ��� � � � �	 � � 	 � � � ��� 	 � � � � ��� 	 � � � � � ��� � � � �
��� �
����� � 	�� � � � 	�� ��� � � � � � � � � � � ���

Pretty slick, eh?
� 	 ��� loads

� � � �
� � 	 ����� � and then

� � � 	 ��� � � when it runs, and if it’s a login shell
(either you’re logging in, or you passed it the �

�
option), it loads

� � � ��� ��� too.

10

6 Examples

6.1 Change Background

You can have cron run this... I created it because I was bored. It switches the background (in X) to a
random picture in a folder of pictures. It requires � � � ���
����� , which is part of most Eterm packages.

��� � ����� � � 	 ���
� � � � � ���
 � � � � � � � �
� ��� � � �
��� �
���� � � � � � � � � ���
 �

��� �
� �

� �	� � � � � � ��	�
������������ �
��
�
� �	� � � � � � � �	� � � � �

��� �
���� �
� ��� � ��� � � ��� � ���
 � � � � �
��� �
���� � � ��� �
�� � �

� � � ��� �
�� � � �� � �	� � ��� � � � � �
� � � ���
����� � � �� � � 	 �
� �
� � � �

6.2 Check �����	�
������
�����������	�����
I have no idea why you would want to do this, but I mentioned it in section 1.3, so here it is.

��� � ����� � � 	 ���
� 	���������
��	� � 	 � ����� �
� � � � � ��� � � � � �� � � � ��� � � � � 	��������
 � ��� 	 � ��� ��� � �� � � 	 � � � �

��� �
� � � � � ��� � � � � �

� � ��� � � � � � � � � � ��� �
� � � �
�� ��� � � � � � � 	 ��� � � � � � � � � � ��� � � � ��� �	 � � ���
� �
� � � �

11

